
Formatted Disk Image (FDI) f i le format version 2.0 descript ion (1st revision)
__

Words, 3-byte values and Double-words are always big-endian, that is most-significant byte stored at the lowest address.

1. File Header
2. Track Description
3. Types 0xDn and 0xFn: raw FM/GCR/MFM data track
4. Type 0xCn: FM/GCR raw decoded-data track
5. Type 0xEn: MFM raw decoded-data track
6. Type 0x8n-0xBn: pulses-index streams track

1. File Header

The header is at least 512 bytes in size.

If there are more than 180 tracks, then one or more 512-byte blocks are allocated for the extra tracks.

Tracks description (90 double-sided cylinders reserved
in first 512 bytes)
cylinder-ordered, then head-ordered for each cylinder

See section 22Ttracks+ 152
-XXX

Reserved for future use02reserved+ 150

In TPI equivalent: 0=48, 1=67, ..., 5=192?1headwidth+ 149

TPI: 0=48, 1=67, 2=96, 3=100, 4=135, 5=192?1tpi+ 148

Flags
=1 => Disk is write protected
=1 => Image is index-synchronized
Reserved for future use

0000 00??1flags+ 147

Base rotation speed - 128 (in rotations/min)?1rotspeed+ 146

0=8", 1=5.25", 2=3.5", 3=3"?1type+ 145

Last head in image (number of heads - 1)?1lhead+ 144

Last track in image (number of tracks - 1)?2ltrack+ 142

Image version number2,02version+ 140

End Of File (for DOS "type" command)0x1A1EOF+ 139

Comment describing the disk image contents0x1A by default80comment+ 59

0xD,0xA2CR+ 57

Creator's signature. For example:
"ApH's Disk2FDI PC version 0.97"

0x20 by default30creator+ 27

File signature"Formatted Disk",
" Image file",

0xD,0xA

27signature+ 0

DescriptionValue
Size
in

bytes
NameOffset

2. Track Description

For each word in the "tracks" field of the header:

The FDI 2.0 specification features 3 levels of data representation.
Lower levels offer a richer representation, especially for non-standard or protected tracks.

- High-level types:
0x0=blank track (size field should be 0)
0x1=standard Amiga double-density track
0x2=standard Amiga high-density track
0x3=standard ST double-density 9-sector track
0x4="standard" ST double-density 10-sector track
0x5=standard PC double-density 8-sector track
0x6=standard PC double-density 9-sector track
0x7=standard PC high-density 15-sector track
0x8=standard IBM high-density 18-sector track
0x9=standard IBM extra-high-density 36-sector track
0xA=standard C= 1541 track
0xB=standard DOS 3.2.x- disk][track
0xC=standard DOS 3.3+ disk][track
0xD=standard Apple GCR 3.5" track
0xE=standard IBM single-density 10-sector track
0xF-0x7F=reserved for future use

- Mid-level types:
0xCn=FM and/or GCR raw decoded-data track
0xDn=raw FM and/or GCR data track

For types 0xCn and 0xDn, n=bit rate:
0=125Kbit/s
1=150Kbit/s
2=250Kbit/s
3=300Kbit/s
4=500Kbit/s
5=Apple 3.5" GCR, tracks 48-63 (281.25Kbit/s)
6=Apple 3.5" GCR, tracks 32-47 (312.5Kbit/s)
7=Apple 3.5" GCR, tracks 16-31 (343.75Kbit/s)
8=Apple 3.5" GCR, tracks 0-15 (375Kbit/s)
9=Commodore 1541 speed zone 1 (tracks 25-30)
10=Commodore 1541 speed zone 2 (tracks 18-24)
11=Commodore 1541 speed zone 3 (tracks 1-17)
12-14=reserved for future use
15=implied bit rate

0xEn=MFM raw decoded-data track, upward compatible with FDI version 1.0:
tracks imaged into type 0xEn version 2.0 will work with a software designed for type 0xEn version 1.0.

0xFn=raw MFM data track
For types 0xEn and 0xFn, n=bit rate:

0=125Kbit/s
1=150Kbit/s
2=250Kbit/s
3=300Kbit/s
4=500Kbit/s
5=1Mbit/s
6-14=reserved for future use
15=implied bit rate

Track type:?1type + 0

DescriptionValue
Size
in

bytes
NameOffset

- Low-level type:
0x8n-0xBn=pulses-index streams track

Size of track data in image in multiple of 256 bytes. If the real size is not a multiple of 256 bytes, then it is increased
to the next 256-byte boundary, and the added bytes are set to 0.
Exceptions:

- in the case of an Amiga double-density track (type 1):
high 4 bits=first sector in track
low 4 bits=size of track data in image in multiple of 512 bytes

- for types 0x8n-0xBn, the size (multiple of 256 bytes) is a 14-bit value, which 6 higher bits are coded in the
6 lower bits of the "type" byte, and the 8 lower bits are coded in the "size" byte.

3. Types 0xDn and 0xFn: raw FM/GCR/MFM data track

4. Type 0Cxh: FM/GCR raw decoded-data track

Note that no Apple GCR was defined, because the self-synchronization process can lose some '0' bits, so an Apple
GCR track should be imaged as a type 0xDn.

Data descriptors, see below:ncookedata+ 4

Offset in bits to the index signal from the beginning of
the data, re-encoded to FM/GCR

3indexpos+ 1

Type of encoding:
0=standard FM
1=Commodore GCR
2-0xFF=reserved for future use

1encoding+ 0

Description
Size
in

bytes
NameOffset

Raw data, FM and/or GCR encoded for type 0xDn, or
MFM-encoded for type 0xFn

size/8(+1)rawdata+ 8

Offset in bits to the index signal from the beginning of
the data

4indexpos+ 4

Exact size (in bits) of track until it loops4size+ 0

Description
Size
in

bytes
NameOffset

Size of track data.(tracksize/256)1size + 1

DescriptionValue
Size
in

bytes
NameOffset

List of standard FM (type 0) descriptors:

List of Commodore GCR (type 1) descriptors:

-0xFFend of buffer

-
-
-

0x0D
...

0xFE

reserved

X*DD2-size in nibbles,
ceil(size in nibbles/2)-data

0x0CCBM GCR-decoded data

X*DD2-(size in bits-65536),
ceil(size in bits/8)-data

0x0BFM/GCR-encoded data

X*DD2-size in bits,
ceil(size in bits/8)-data

0x0AFM/GCR-encoded data

X*DD1-size in bytes, 1-data byte0x09RLE C= GCR-decoded data

X*DD1-size in bytes, 1-data byte0x08RLE FM/GCR-encoded data

In this section, every GCR-decoded nibble is re-encoded by using the standard Commodore GCR
encoding table. For RLE data, a size of 0 means 256 bytes.

-
-
-

0x03
...

0x07
reserved

X '1' bits2-size in bits0x02CBM GCR sync mark

-0x01reserved
-0x00reserved

unpacked data
DD stands for data byte

packed data extension:
size in bytes-
description of the field

data
type
byte

data type description

-0xFFend of buffer

-
-
-

0x0E
...

0xFE
reserved

X*DD2-(size in bits-65536),
ceil(size in bits/8)-data

0x0DFM-decoded data

X*DD2-size in bits,
ceil(size in bits/8)-data

0x0CFM-decoded data

X*DD2-(size in bits-65536),
ceil(size in bits/8)-data

0x0BFM/GCR-encoded data

X*DD2-size in bits,
ceil(size in bits/8)-data

0x0AFM/GCR-encoded data
X*DD1-size in bytes, 1-data byte0x09RLE FM-decoded data
X*DD1-size in bytes, 1-data byte0x08RLE FM/GCR-encoded data

In this section, FM-decoded data is re-encoded by inserting a '1' bit before every data bit.
For RLE data, a size of 0 means 256 bytes.

1*0xF57E-0x07standard FM header sync
1*0xF77A-0x06standard FM index sync
1*0xF56F-0x05standard data FM sync
1*0xF56E-0x04data FM sync
1*0xF56B-0x03data FM sync

1*0xF56A-0x02deleted data FM sync
1-0x01one "1" bit
0-0x00one "0" bit

unpacked data
DD stands for data byte

packed data extension:
size in bytes-
description of the field

data
type
byte

data type description

5. Type 0Exh: MFM raw decoded-data track

Please note that the following descriptors have been significantly simplified over FDI version 1.0: Types 0x00 to
0x0D, and 0xFF are unchanged, while all other types have been removed.

List of standard MFM (type 0) descriptors:

-0xFFend of buffer

-
-
-

0x0E
...

0xFE
reserved

X*DD2-(size in bits-65536),
ceil(size in bits/8)-data

0x0DMFM-decoded data

X*DD2-size in bits,
ceil(size in bits/8)-data

0x0CMFM-decoded data

X*DD2-(size in bits-65536),
ceil(size in bits/8)-data

0x0BMFM-decoded data

X*DD2-size in bits,
ceil(size in bits/8)-data

0x0AMFM-encoded data

X*DD1-size in bytes, 1-data byte0x09RLE MFM-decoded data

X*DD1-size in bytes, 1-data byte0x08RLE MFM-encoded data

In this section, MFM re-encoded data do NOT include the 2 outter MFM sync bits.
For RLE data, a size of 0 means 256 bytes.

-
-
-

0x05
...

0x07
reserved

1 if both neighboring bits are
0, 0 otherwise.

-0x04one MFM sync bit

1*0x5224-0x03standard Index sync

1*0x4489-0x02standard MFM sync

1-0x01one "1" bit

0-0x00one "0" bit

In this section, MFM re-encoded data for types 0x02 and 0x03 include the first MFM synchronization
bit. They also include the next MFM synchronization bit if they are immediately followed by MFM-
decoded data of type 0x0C or 0x0D.

unpacked data
DD stands for data byte

packed data extension:
size in bytes-
description of the field

data
type
byte

data type description

Data descriptors, see below:ncookedata+ 4

Offset in bits to the index signal from the beginning of
the data, re-encoded to MFM

3indexpos+ 1

Type of encoding:
0=standard MFM
1-0xFF=reserved for future use

1encoding+ 0

Description
Size
in

bytes
NameOffset

6. Type 0x8n-0xBn: pulses-index streams track

Each of the size fields (averagesz, minsize, maxsize and indexsize) contains the size of the corresponding data in
the lower 22 bits, and the compression type in the high 2 bits.

Description of the 4 streams of data:

The track data is represented by the pulses recorded directly from the floppy drive Read Data line. Each stream is a
list of sequential pulses, the last pulse directly preceding the first (data loops). Each pulse is described at the same
position in each stream.

- Average stream:
When uncompressed, each pulse in this stream is a 4-byte data representing the average time elapsed since the
previous strong pulse. A pulse is detected as strong or weak using the "index" stream.
Additionally, the whole track "time" can be calculated by adding all data from each strong pulse in this stream. This
whole track time is guaranteed to fit in 32 bits. The real time of each pulse can then be calculated by dividing this
whole time by the real track time (0.2 sec for a standard PC 3.5" disk drive or low-density 5.25" disk drive, 1/6 sec
for a standard PC high-density disk drive).

- Minimum stream:
This stream is optional. When uncompressed, each pulse in this stream is a 4-byte data representing the minimum
time elapsed since the previous strong pulse. It is in fact encoded as (average - real minimum), so the real value
must be calculated from the stream minimum as (average - stream minimum).
When using this minimum value, keep in mind that changing the average value towards this minimum value must be
done according to the minimum and maximum values from the other neighboring pulses, so that the whole track time
is maintained and no minimum or maximum value is exceeded.

- Maximum stream:
This stream is optional. Still, it cannot exist without the minimum stream.
When uncompressed, each pulse in this stream is a 4-byte data representing the maximum time elapsed since the
previous strong pulse. It is in fact encoded as ((average - real minimum) - (real maximum - average)), so the real
value must be calculated from the stream minimum and maximum values as (average + stream minimum - stream
maximum).
When using this maximum value, keep in mind that changing the average value towards this maximum value must
be done according to the minimum and maximum values from the other neighboring pulses, so that the whole track
time is maintained and no minimum or maximum value is exceeded.

+maxsize
+minsize

"index" stream dataindexsizeindexdata+16+averagesz

+minsize
"maximum" stream data (optional)maxsizemaxdata+16+averagesz
"minimum" stream data (optional)minsizemindata+16+averagesz
"average" stream dataaverageszaveragedt+ 16

Size in bytes of the "index" stream in the file +
Compression type of this stream

3indexsize+ 13

Size in bytes of the "maximum" stream in the file +
Compression type of this stream

3maxsize+ 10

Size in bytes of the "minimum" stream in the file +
Compression type of this stream

3minsize+ 7

Size in bytes of the "average" stream in the file +
Compression type of this stream

3averagesz+ 4
Number of pulses recorded for the track4numpulses+ 0

Description
Size
in

bytes
NameOffset

- Index stream:
When uncompressed, each pulse in this stream is a 2-byte data representing the average status of the index signal
quickly after the pulse occured.
The most significant byte is a count for the '1' state of the index signal.
The least significant byte is a count for the '0' state of the index signal.
Additionally, the corresponding pulse can be detected as strong or weak by the following algorithm:

- search in the stream for the maximum of the sum of these 2 bytes
- if the current sum of these 2 bytes = maximum sum => pulse is strong
- if the current sum of these 2 bytes < maximum sum => pulse is weak

Possible values (compression types) for the high 2 bits of averagesz, minsize, maxsize and indexsize:
0=no compression
1=Huffman-type compression
2=reserved for future use
3=reserved for future use

For type 1, a stream is encoded into one or more sub-streams as follows:

A sub-stream corresponds to a portion of the stream, from a determined low bit number to a determined high bit
number of each value (for example from bit number 8 to bit number 15 of each value in the stream). If more than
one sub-stream encodes the stream, the sub-streams are ordered from the higher orders first to the lower orders
last. The low bit number of the last sub-stream is always 0.

Each sub-stream is encoded as follows:

First byte:
bits 0-6: low-order bit number (included) of the stream values that is encoded into the sub-stream.
bit 7:

0=decoded values must be zero-extended.
1=decoded values must be sign-extended, from bit 7 or bit 15.

Second byte:
bits 0-6: high-order bit number (included) of the stream values that is encoded into the sub-stream.
bit 7:

0=8-bit values in the tree.
1=16-bit values in the tree.

Following bytes: Huffman tree, encoded as bits. Bit 7 to bit 0 of the first byte, then bit 7 to bit 0 of the next byte, etc.
For each bit:

0=node has 2 branches.
1=node is a leaf.

The bit following a 0 bit corresponds to the left branch.
The bit following a 1 bit corresponds to the deepest available right branch.
When no right branch is available after a 1 bit, then the tree is complete, and the tree leaf values begin at the byte
following immediately the byte containing the last 1 bit of the tree. The tree values are 8 or 16-bit values (depending
on bit 7 of the second byte of the sub-stream) that correspond to a path in the Huffman tree. The values are stored
in the same order as the 1 bits are found in the encoded Huffman tree.

The packed data immediately follow the tree leaf values, a 0 bit meaning a left branch in the tree, and a 1 bit meaning
a right branch. The bits are stored in bits 7 to 0 of the first byte, then bits 7 to 0 of the second byte, etc. When a leaf is
reached, then the corresponding tree leaf value must be zero or sign-extended, then output to the appropriate bits of
the decoded stream. The number of values to decode corresponds to the number of pulses recorded for the track.

- - - - End of Formatted Disk Image (FDI) f i le format version 2.0 descript ion - - - -

Vincent "ApH" Joguin.

