Introduction

The following technique solves a technical problem that was commonly said to be impossible to solve. The most notable example is from the UAE-author Bernd Schmidt in his FAQ found in the UAE (Unix Amiga Emulator) distribution. See http://www.freiburg.linux.de/~uae
Here’s the full quote from this FAQ:

** AMIGA DISKS, DISK IMAGES, HARDDISKS, CDROMS

Q: Is it possible to read Amiga disks with a PC?

A: Ask that in comp.emulators.misc :-) The answer is: NO! Unless you invent

 and build some extra hardware yourself, which no one appears to have done

 yet. You'd also need some extra software driver; the whole setup would be

 similar to the X1541 cable/software for C64 emulators.

 Some people have pointed out that you can buy a controller named "Catweasl"

 which apparently can read all sorts of disks on a PC, including Amiga

 disks. Please don't ask for details, I don't have the thing and I can't

 tell whether it works.

Q: Couldn't I attach an Amiga floppy drive to the PC somehow, and use that to

 read Amiga disks?

A: You can attach Amiga (low-density) drives to the PC, because they are

 completely identical to PC drives. This won't help you, because the problem

 is not the drive, but the PC floppy controller. You have to live with it.

Q: But the PC can read 11-sector formats!

A: Yes, but those sectors look a little different to the hardware.

Q: But the Amiga can read PC disks!

A: So what?

Q: But the PC can read Atari ST disks!

A: So what?

Q: But...

A: No way. If you still are convinced that it must be possible, prove it.

 Write a program to read Amiga disks with a standard PC controller, and I

 will apologize in public.

The following paragraphs describe such a program.

I. How to read a full track

I.1. Technical background

The PC-AT controls the floppy disk drives using a standard Nec (PD 765 floppy disk controller (FDC) addressable at I/O addresses 3F4h and 3F5h plus two output registers (the Digital Output Register at I/O address 3F2h, and the Configuration Control Register at I/O address 3F7h), and one input register (the Digital Input Register at I/O address 3F7h).

The following technique makes use of the architecture of the 765, and of the fact that the 765 is not linked on a programming point of view to the other hardware registers.

The Digital Output Register gives control over the disk drive motors, and the selection of a particular disk drive for disk operations. The Configuration Control Register enables the selection of a bit rate for disk read/write operations. These controls are made independently from the NEC 765.

I.2. The algorithm

This algorithm requires two disk drives installed (read the 1DISKDRV.TXT file to get an explanation why reading raw data generally with only 1 disk drive is physically impossible).

Insert the disk you want to fully read in one drive (let’s say A: in this example).

Insert another disk in the other drive (B: in this example). This disk must be IBM-formatted.

· Select drive A: using port 3F2h. Also turn on motors for both A: and B:.

· Go to the desired track and side using standard FDC 765 commands.

· Swap to B: using port 3F2h.

· Select density appropriate for IBM-formatted disk in B: using port 3F7h.

· Issue a “Read a Track (Diagnostic)” command using the FDC 765. The parameters should match a sector that is physically present on the IBM-formatted disk, for example sector #1. For this command, set a sector size of at least 8KB (even if the physical sector is 512 bytes long). 16KB and 32KB sector sizes can be set to read more raw data. DMA registers should have been set accordingly.

· Watch continuously the DMA address until it is different from the starting address. When it is so, it means that the 765 has begun transferring sector data, so it has previously found the sector header on B:.

· As soon as the DMA address is increased, swap to A: using port 3F2h. This is the main idea behind this technique. The 765 has no way to know disk selection has changed because port 3F2h is not linked to it. This 1st step was discovered on the 11th of December, 1999.

· Change density (bit rate) using port 3F7h. For a full track read, including MFM synchronization bits, you must set a bit rate twice the standard value. For example, when reading a 250 000 bits/sec track (double-density track), set the bit rate to 500 000 bits/sec. This 2nd step was discovered on the 18th of December, 1999.

· The FDC 765 will now read the disk in drive A: from now on, thinking it is a big sector on disk in drive B:. Wait for FDC interrupt. Of course, most status bits at the end of this operation should be just ignored, such as the data error (CRC) flag (which will be obviously set). The main indicator of a successful operation is the DMA counter or address. For a 32KB “sector” read, the DMA address will equal the starting address plus 32768 if the operation was successful.

Since some bytes were read at first from drive B:, and the swap of drives and bit rates will require a little time to settle, it is wise not to consider the first 50 bytes read.

If the track to be read contains an IBM sector, drive swapping may not be necessary. Yet, bit rate swapping can be useful, especially for protected or non-standard tracks.

II. Example of data written to disk

Let’s take the example of a byte written to disk. Let this byte be 4Eh (ASCII character ‘N’). In binary, this is 01001110. We’ll consider it is written on a double-density disk (at 250 000 bits/s).

The MFM encoding will insert a synchronization bit between every two bits. A ‘0’ synchronization bit is placed if either of the two neighboring bits is a ‘1’ (or both). A ‘1’ synchronization bit is placed otherwise, i.e. if both neighboring bits have the value ‘0’.

In our example, the character ‘N’ is encoded this way (if the bit on the left was ‘0’):

 0 1 0 0 1 1 1 0

The character ‘N’.

1 0 0 1 0 0 0 0

The MFM synchronization bits.

1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0

The resulting data, written to disk.

In hexadecimal notation, the written data corresponds to 9254h

This encoding will ensure that not too many ‘0’s will be written consecutively. A ‘0’ corresponds to a stay of the magnetization on the surface of the disk, and a ‘1’ corresponds to a change of the magnetization. If too many ‘0’s were written consecutively, the FDC may lose synchronization with the data stream from the disk drive when reading.

The FDC 765 encodes data using MFM, but it also decodes data always considering it was previously encoded using MFM.

The FDC will first look for three standard MFM synchronization words. They are different from the synchronization bits for MFM encoding. The standard MFM synchronization word corresponds to a value of 4489h, encoded value (would be A1h when decoded), and it is not a standard MFM encoding (A1h MFM encoding would be 44A9h). This way, this value (4489h) will never be encountered when reading normal data. This word is used for the FDC to find the start of sector headers and data.

One of the many differences between IBM and Amiga sectors for example is that the IBM format requires three synchronization word, whereas the Amiga format only requires two.

III. What is read of these data based on various methods

When using the technique described in this paper, the FDC will decode data as it does usually. This will of course result in a buffer where only half the full data is present.

Since the data read from the disk in drive A: were not aligned with synchronization words of a sector header on the disk in drive A:, but on the disk in drive B:, the data read can be misaligned. The probability for the data to be misaligned is of 50%.

Two different methods can be considered when reading data.

III.1. “Normal” density reading

If you switch to the density corresponding to the disk density (for example 250 000 bits/sec for a 1 MB double-density disk), you’ll get either the actual data or the MFM synchronization bits.

Here’s the example:

1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0

The full data on disk.

 | | | | | | | |

 0 1 0 0 1 1 1 0

4Eh => character ‘N’

| | | | | | | |

1 0 0 1 0 0 0 0

90h => MFM synchronization bits for ‘N’

With the actual data, you can reconstruct, or simply ignore, the MFM synchronization bits, except for the MFM synchronization words. However, these words can be detected by analysis of sector headers. For example 0000A1A1 may be the beginning of an Amiga sector, with its two standard MFM synchronization words. To verify it is a valid Amiga sector, CRC can be checked on the whole header. This approach is efficient enough to read standard tracks without CRC errors nor non-standard sector headers.

With the MFM synchronization bits, you’re out of luck because you can’t reverse them to actual data. The only way to get the actual data is to read the disk once again, until actual data is read as above. In this example, when reading 90h (MFM synchronization bits for 4Eh), it can correspond to the following non-encoded data:

1 0 0 1 0 0 0 0
=> synchronization bits 90h.

 0 1 0 0 1 0 1 ?
|

 0 1 0 0 1 1 0 1
| possible data resulting in a synchronization value of 90h.

 0 1 0 0 1 1 1 ?
|

 |

 You can’t tell whether this bit was ‘0’ or ‘1’.

So the value 4Eh is only a possibility among others.

Sector data are always aligned, so you will be able to extract at least a full sector with luck. The Amiga always writes a full track at once, so changes in the alignment may only appear once in the whole track, where the Amiga stopped writing the track. However, the PC behaves differently: it will format a whole track at once, but it will write only one sector at a time on a formatted disk. This can lead to a change in the alignment before the sector data (just before the synchronization mark which corresponds to 12 * MFM ”00h”, then 3 * raw ”4489h”, then MFM “FBh”), and after the sector data (just after the 2 CRC bytes).

III.2. “Double” density reading

Another way to read a track is to switch to twice the density normally required. For example: 500 000 bits/s (high-density bit rate) for a 1 MB double-density MFM disk, or 1 Mbits/s (extra-high-density) for a 2 MB high-density MFM disk. This way, you’ll get either all the data (actual data and MFM synchronization bits) or a buffer filled with zeros, at least partially.

As above, if you’re out of luck reading a buffer of zeros, you’ll have to read again until you get useful data. If you are lucky enough to get the full data, it will correspond to the whole raw data, as it would have been read with an Amiga controller, or a Central Point Option Board.

Here’s the example:

1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0

The full data on disk at 250 000 bits/s.

The magnetization on the surface of the disk corresponds to the following diagram:

[image: image1.png]Size of a bit
at 250 Kbits/s

10000010000010000010001000100000
]

Size of a bit
at 500 Khitsis

When considered at twice the density, extra ‘0’s are read between each data bit (actual or synchronization) because the magnetization doesn’t change as shown above.

1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0
The full data on disk

| | | | | | | | | | | | | | | |

at 500 000 bits/s.

1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0

9254h => raw data

 | | | | | | | | | | | | | | | |

at 250 000 bits/s.

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
buffer of ‘0’s

With enough luck, you get the full raw MFM data, even though the FDC 765 decodes the data as MFM-encoded.

IV. How to reconstruct full data

As shown above, it is rare to extract the full interesting data at once. The resulting buffer will often be only partially exploitable, or even totally useless. As a consequence, it is necessary to read the track more than once.

The extraction of useful data can be either sector-oriented or based on the detection of a long-enough buffer.

If standard, or nearly-standard disks are considered, sector-oriented extraction will be more robust (because CRC comparisons can be calculated directly on the buffer) and faster since a “normal” density method can be applied. The sector size to be issued to the FDC for “normal” density can be half the size of the sector size for “double” density, thus reducing the time of a track read.

For highly non-standard disks (for example, some Amiga protections use an MFM synchronization word other than 4489h) or disks that make use of an encoding other than MFM encoding (such as the GCR encoding), the use of “double” density reading is necessary.

In this case, a complete buffer can be reconstructed based on the size of a full track (roughly 12600 bytes for a double-density 250 000 bits/s track). If a continuous buffer, without “0 holes” (fields of at least 4 or 5 consecutive ‘0’ bits, which cannot be found in normal MFM-encoded data), is found to be larger or equal to the size of a track, then this buffer can be extracted and analyzed.

If the section of buffer containing actual data is found to be a lot larger than the size of a full track, the buffer can be reduced to exactly the size of the track, by detecting where the data “loops”, or repeats in the buffer. Such a large buffer can be read if alignment remains correct for longer than a spin time of the disk in the drive.

If “0 holes” are detected in any track-size window inside the buffer, it may be necessary to read the track once again until other data are read. Data in the new window buffer must have a different alignment from the data in the first window buffer. With both window buffers, it is possible to reconstruct the full track buffer by comparing the sizes of the “0 holes” for example. Both window buffers can also be found in the same buffer if it is large enough and a change in the alignment occurs after the first spin of the disk. In this case, reading the disk track once again is unnecessary.

It is often the case to have “0 holes” with IBM-formatted disks, because sectors were written independently one from the others. Curiously, it has the consequence to make reading a PC-formatted disk tougher with this method than reading an Amiga-formatted disk which tracks were written at once.

Of course, other algorithms to reconstruct a full track buffer can be developed if required for specific track formats.

V. What to do with full data from a track

When the full data from a track are extracted, they can be either stored in this raw format for later use, or analyzed.

One of the first tasks is to detect synchronization words (4489h) in the case of a standard MFM track (IBM, Amiga, …). Sector headers, sector data, and gap areas can be parsed to create a higher level, structured buffer.

In a last operation, standard tracks can be detected (9-sector IBM track, 11-sector Amiga track, …) and the buffer simplified with only the decoded sector data.

In any case, the track buffer should be saved to disk in an appropriate format. It can also be exploited directly, for example within an emulator or a file manager.

Written on the 25th of March, 2000 by Vincent Joguin.

Updated on the 31st of October 2001.

